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* High resolution gDeci-second) data for 329 Signalized

Intersections from

* 3 key sets of files:
» Raw Data Files

eminole County,

D5,| Florida
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» Data Logging Requirements File:-
« ATSPM Additional Tables i

 Raw Data Files

SignallD Timestamp
10852017-01-05 00:00:00
10852017-01-05 00:00:00
10852017-01-05 00:00:00
10852017-01-05 00:00:00
10852017-01-05 00:00:00
10852017-01-05 00:00:00

EventCode EventParam
136
140
142
143
144
145

« 22 comma-separated value files, between 10-17 GB each,
contains the data recorded at 10 Hz frequency. Each file
contains about a week of raw data.

 Has 4 columns: SignallD, Time of recording, EventCode:
What event at the signal was captured & EventParam:
ue of the event or attribute at that UF

What was the val
timestamp

000000

FLORIDA




onal U
Pote Bad Dete
C Dle
M1 -
M2 -
M3 -
g [
w
[
£ e
M6
W
Mg
12AM 6AM 12PM 6PM 12AM
Time/Cycles
M1 -
M2 4
M3 4
0
Q
0
o
c
o

6PM 12AM

12PM
Time/Cycles

12AM 6AM

Thursday

M1 4

M2 4

M3 4
0
RCE
0

0]
£ w54
o

M&

M7 4

M8

1

Phases

Monday

Phases

Tuesday

@
1sos

@
1120

o
1100

o
1305
1110

o
1sco
113s

Wednesday

M1~

12 o

w3 o

12PM

T T 12AM 6AM 6PM 12Al
2AM 6AM 12PM 6PM 12AM Time/Cycles
Time/Cycles
1 = M
12 2
‘dn) Ma
®
£ s -
o
12AM 6;I\M 121PM 6I;M 12AM  12AM 6AM 12PM 6PM 12A1
Time/Cycles Time/Cycles

Friday

Saturday

Phases

Phases

6PM 12AM

12PM
Time/Cycles

12AM 6AM

CE

12PM 12AM

Time/Cycles

Sunday UF

UNIVERSITY of

FLORIDA

12AM 6AM




Phases

al Ove
Sunday
|
L
12PM 6PM
Time/Cvcles

s

12PM 6PM
Time/Cycles

Thursday

Monday

0
M4~
0

12AM 6AM 12PM 6PM 12AV

Time/Cycles

12AM bAM 12PM 6PM 12AM

Time/Cycles

Friday

Tuesday

Phases

West 25t eet@®
1045 1700 1705

Wednesday

Phases

12AM 6AM 12PM 6PM 12AM

TimallCurlac

{ |

12AM 6AM 12PM 6PM
Time/Cycles
M o
M2
0w M3
3 M <
g 5
Qs
e
e | 1
12AM 6AM 12PM 6PM
Time/Cycles
Saturday

6AM 12PM 6PM 12AM
Time/Cycles

Sunday 'U'F

UNIVERSITY of

FLORIDA




&< k< & &

1 Hour Dashboard

Multi Hour Dashboard

Multi Hour Dashboard Even

=]
*
. 3
(o)
*
* AR RIA-RK-K— R
.
° ®
L o)
2 3 ®
 a
% %™
x - *
= k2 4
N x
% x
) =
o’?ooo omoO®* 0-0 %
x ©
ks
* = <

*

*% L

x e

x-x

Hour
10

Category

Q© Detector Mapping not Present

@® Ok
® Potential C

apacity

* Potential Timing: High Demand

@ Potential Timing: Low Demand

Behaviour
B 541, Road:
452, Road:
B 404, Road:
400, Road:
B 373, Road:
320, Road:
M 276, Road:
156, Road:
B 183, Roac:
I 158, Road:
- 153, Road:
144, Roac:
B 125, Road:
115, Roac:

SR4... [ 24, Road

SR4... 24, Road
SRA4... [l 24, Road
SR4 24, Road
uUsi... [ 24, Road
SR4... 24, Road
usi.. [ 24, Road
Red. 24, Road
LkM... [ 24, Road
SR4... 24, Road
LkM... . 24, Road
Red... [ 24, Road
SRA4.... [l 23, Road
HET... 22, Road

B sSS, Road: Rine... [l 21, Road

84, Road: How 21, Road
B 30, Road: Airpo... [l 21, Road
78, Road: Palm... 20, Road
B 77, Road: HETh... ] 20, Road
75, Road: LkEm... 1S, Road
B 75. Road: CR42... [} 1S, Road
72, Road: 1stSt... 18, Road
I 64, Road: Weki... [l 18, Road
5S, Road: Inter... 17, Road
M 55. Road: CR41... [l 17, Road
46, Road: Bunn... 16, Road
B 45, Road: Oxfor... ] 15, Road
3S, Road: SR41... 13, Road
B 35, Road: How... [l 13, Road
I 37, Road: Sand... 11, Road
B 34, Road: SR43... [l 10, Road
29, Road: Tusk... ] 10, Road
. 29, Road: SR43... . S, Road:
28, Road: SR43... S, Road
B 27, Road: Centr
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B 24, Road: Town...
24, Road: Tan

n...
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@ Ok
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Y Potential Timin..

B 136, Road: SR436, Days: MTW, ID: 1_1
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. 35, Road:
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[ PN

SR436, Days: MTU, ID: 6_2
SR46, Days: MTW, ID: 1_3
SR434, Days: MTW, ID: 5_1
SR434, Days: WFS, ID: 2_1
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SR434, Days: WRF, ID: 8_1
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Machine Learning and
Optimization for
Sighal Control for an
entire grid using
ATSPM Data, TMC
Data, Here.com data
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Optimizing Traffic for a Grid

Machine Learning
and Optimization
for Signal Control
for an entire grid
using ATSPM Data,
TMC Data,
Here.com data



Commodity Movement Using Machine Learning

« Intimate knowledge of WIM data + Roadside cameras
« Advanced knowledge of trucks/trailers + Concept of Truck Taxonomy
* |dentify experts of Machine Learning and Application Development

i - I

WIM Data Taxonomy Commodity Machine
Learning

WIM Dataset w/ Truck
Attributes & Commodity

LEGEND
@® Weigh-in-Motion (

project conceptualization, credit to FDOT @ NaTMEC 2018




Truck and Commodity Classification Using Machine Learning

Typical Typical
commodities industries

ns/reef Palleti i M vt M
Five-axle tractor semitrailer, 3-S2 ;lsascz)ree " § LS LIZRG AR L os M . V- 3 N :

l » Refrigerated goods e Produce Y 4 B
(59%) Flat decks « Equipment « Construction (

(16%) « Building supplies » Manufacturing

Configuration Body type

Six-axle lractor semitrailer, 3-S3 i s
ﬂ” oppers « Grain
(19%) (6%) « Granular fertiizer  ° AGriculture

’ e - ‘W < 1w 2
Nine-axle turnpike double, 3-52-4 Tankers * Petroleum products  « Peltroleum /,'f“ - St ﬁ!il
m (4%) « Chemicals « Chemical g A '
(8%)
Dumps : Aeggll:gate » Construction
Eight-axle B-train double, 3-83-52 (6%) * Refuse Y AT

m (7%) Containers « Palletized cargo « Retall

(2%) « Freight of all kinds

IMBALANCED CARGO/EQUIPMENT
FLOWS SPECIALIZATION

Machine Learning on Actuator VIM sites

Sensors and Video Images of 29 Total Statewide
Trucks passing on a highway 13 on Interstates

Text Recognition from Images S e e mehicle Records w/ Time

= M Study Site - ‘9956’ on I-75 near FL/
GA border

ssssss




|ldentification using Machine Learning

Truck Detector
Raw

Video/Image + ObjectPosition

Data + ObjectivenessScore
+ ObjectClass
T - + ObjectSubClass

(N R Fee('jback + getFeatures
Vi eW 1 + train
+ test

+ ObjectClass
+ ObjectSubClass

+ getFeatures Truck Tracker

' + train
oS + test

+ ObjectPosition
“| + TrackQualityScore

Annotation Tool + getFeatures

+ imageFrame I + init
+ labelFrame Controller 1 + update

+ exampleFrame + train
+ test

+ uploadDir

+ LoadDir

+ loadimage
+ savelmage
+ deletelmage
+ setClass

+ selectLabel Con‘ltrOI ler

+ editSubtypeChoices

; Controller 2

m---k---------------‘




Annotation Tool

® o X/ Truck Classification Tool

Label | Class'rfy] Generate] Bounding boxes:
class —=> class9 tractor —=> Sleeper

Load Image Dir:|001

Selected Box

Image Status: Corrected
2017-10-11 12:33:35

Delete ‘ Delete AII‘

Change Selected Label | Label - Class

9. Single Trailer 5-Axle Trucks

Classes | Commodities ]

Class

classo)

Sleeper

Tractor Type

Trailer Type

[Enclosed

Trailer Subtype

INA

Hazmat Truck lDropdown - Class

 Yes o No  Unknown 9. Single Trailer 5-Axle Trucks
Refrigerant Unit
 Yes & No  Unknown
Wide load

—

 ¥Yes & No  Unknown

o ; f §
<< Prev Next == 0055/14497 Go to Image No. |100 Go

Save Corrected Image |

Delete Current Image ’




Demo Video




Real-time Multi-Object Tracking and Near Accident Detection for
Traffic Video Data

Object Detection Object Tracking Collision Detection

» Leverage deep learning Implement Real-Time Tracker « Two-Stream: Learn collision
based object detection for road users based on probability using appearance

* Fine-tune Detection CNNs DeepSort (Tracking by model and trajectory model
(YOLO) on Multi-Scale Detections with Kalman |ldentify collision locations
Drone/Satellite Videos/ Filter) and associated objects

Annotation example




Duration: 04:45 (24fps)

Experimental Results on aerial video
Video 1: ‘400ft.mov’

y
A

Resolution: 1280 x 720
Collision Scenario: None

.
Hill

EL

Car Detection Result

EO'

SR

s

iIH‘.‘!‘H?iHi!lIIIHHH
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Aerial Video (Real-time)
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CAl___car..car,
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B drrs TR
Result on real video
Video 1: ‘400ft.mov’
Duration: 04:45 (24fps)
Resolution: 1280 x 720
Collision Scenario: None

e - ..,E 3 r -
Result on video created by game simulation
Video 2: ‘Traffic_5.mp4’

Duration: 00:12 (25fps)
Resolution: 1280 x 720
Collision Scenario: r

UNIVERSITY of
RIDA



Realistic Simulation: Differential Light Conditions




Realistic Simulation: Differential Vehicle Classes

T
Motorcycle

Car

Truck
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Real-Time Demo (Multiple Vehicle Types)




Image Transformation and Stitching

/ | T
e T g
/ “» ”é" = T -
VR fo
R RN 7

Original Fisheye Video

yIrrrgas i

_F

UNIVERSITY of

FLORIDA

Lens Correction Simulated Video



Intelligent Intersection Control System

4 )
Signel Control Trafic
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Problem Description

Given: the arrival information o
of automated vehicles and

conventional vehicles

Goal: to optimize the average
delay by advising automate
vehicles and controlling signal
phase and timing

Involves Sensing technologies
» Dedicated Short Range Communication
* Radar
* (Camera, Lidar)

Autonomous Vehicle Technology
» Navigation and Localization algorithms

Optimization Algorithm
* Vehicle Path Optimizer
« Signal Status Optimizer




Camera/Radar to
obtain conventional
vehicle arrivals

evice to collect and

A

Arrival information:
(Lane, Speed, Location)

» fuse vehicle arrivals
information

:D

—Vehicle Arrivals

Arrival information:
(Lane, Speed, Location, Length,

Max acceleration, Max deceleration,

Destination)

A 4

Signal
Controller

Optimal Signal Decision

O

Intelligent Intersection
Control Algorithm

-‘\
[

Conventional Vehicles

Automated /Connected Vehicles

wne”

: g

o

-(E—@ptimized Trajectories

Signal Heads |,
rerer)A







Bigdata: Predicting and preventing fatal crashes (FDOT D5)

Landuse

Geolocation
Landuse Type

| Red Light Cameras Signals Construction
Geolocation Geolocation Geolocation
Camera Type Signal Type Begin/End Date

' Roadway Characteristics

Geolocation

Median Type

Median Width

Surface Condition
Surface Width

Number of Lanes
Functional Classification
Maximum Speed
Number of Luminaries

Pedestrian Crash Event

Crash ID
Geolocation

' Demographic Information

Geolocation

Total Population
Minority Population
Income Status
Education Level

Vehicle Ownership Status

l

Transit Stops

Geolocation
Number of Riders

l l

Transit Route Walking / Biking
Geolocation Geolocation
Number of Riders Trip Count

l

Relationship

Sidewalks

Ganesville

PUTNAM

"Aﬂl' 15A55a
Springs

RMNAND(

Legend
: Crash Injury Severity
- N ¥ Fatality, ...
5 v ol Incapacitating lnjury
T2 © Some Injury R
= Property Damage Only

stersburg

Avon Park
777777777777777 - v ~ ArFoxe - -
Range { ki

UNIVERSITY of

FLORIDA




C @ C'| C ADDIOc - c o
Accuracy Logistic Decision DBN GBM SVM
Values Regression Tree
Intersection 57% 88% 78% 91% 68%
Roadway 60% 77% 68% 86% 63%
segment
Sensitivity Logistic Decision DBN GBM SVM
Values Regression Tree
Intersection 76% 18% 37% 10% 76%
Roadway 86% 43% 76% 20% 78%

UNIVER SITY of

FLORIDA




Five-axle tractor semitrailer, 3-S2 BEACK 4CRES ; e -
m (590/0) Intelligent Intersection Control System ’U:':v‘;‘v 3 (:} . "’G‘ IS _::.;‘;Ci +
Sgral Contrl e = i ey L -
Six-axle tractor semitrailer, 3-S3 _im ) ey 8 i s » /L ] - :
v S— (19%) venoms (B o Gereton O 28 L\ 4 |, Fot G
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m [ ,\‘Ej:'::::m Travel Gecance, i y
(8%) - J/ Pl : ‘ g
Lg .__I | ; Mg '1_; ; : =L ;
Eight-axle B-train double, 3-S3-52 9 r :Bf ‘ ¢ ‘ ; ; e marerTi
m (7°/°) -\ A mous Vehicle ’;er- Conventional Vehicles
Truck Mining Pedestrian Optimizing for a Single I-Street Testbed

Classification = Fatalities
. |

ey =

Intersection

Development Deployment and Transition
to Practice

State-of-the-art Edge and Cloud
Computing

Use of Machine Learning, Image =

Processing and High Performance o

Computing Classifying and
Clustering Signal
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Incident Detection and

Optimizing for a Transportation
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